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Abstract

In clinical EEG-based diagnosis, the acquisition of sufficient and well-labeled data is often hindered
by high data collection costs, limited accessibility to subjects, and the inherent difficulty of expert
labeling. These constraints result in insufficient data availability, significantly limiting the
performance and reliability of traditional machine learning models. To address this challenge, we
propose a hybrid human—-machine diagnostic framework that integrates deep convolutional
generative adversarial networks (DCGANSs) and convolutional neural networks (CNNs) for
depression detection under incomplete data conditions. The DCGAN module synthesizes realistic
EEG samples to augment scarce datasets, while CNNs are employed for feature extraction and
classification. A confidence-aware fusion strategy dynamically integrates expert assessments with
model predictions, effectively improving diagnostic accuracy in scenarios with limited labeled data.
Experimental results on real EEG datasets demonstrate that the proposed approach achieves superior
performance, offering a practical solution for intelligent diagnosis in resource-constrained settings.

1. Introduction

The human brain is an extraordinarily intricate organ that governs perception, cognition, and behavior,
forming the foundation of all higher-level mental functions[1]. Ensuring the stability and health of this system
is therefore essential for maintaining effective cognitive performance and sound decision-making[2]. However,
avariety of neurological and psychiatric conditions can disrupt normal brain functioning. Among them, Major
Depressive Disorder (MDD) has emerged as one of the most prevalent and debilitating mental health disorders
[3], posing substantial clinical and societal challenges.

An epidemiological data reveal its alarming prevalence, as demonstrated by Huang et al.’s nationwide sur-
vey indicating a 6.8% lifetime depression incidence in China [4]. The disorder’s socioeconomic impact proves
equally concerning, accounting for 6.2% of China’s total disease-related economic burden and ranking as the
second most costly mental health condition [5]. Globally, the World Health Organization (WHO) classifies
major depressive disorder (MDD) as the fourth leading cause of disability worldwide [6], further underscoring
its clinical significance [7]. Characterized by persistent emotional distress, cognitive impairment, and func-
tional decline, depression not only disrupts daily activities but also severely compromises social engagement
capabilities [8]. Particularly vulnerable populations like the elderly face exacerbated challenges, exhibiting
poorer recovery trajectories compared to younger cohorts [9]. These multifaceted consequences highlight the
critical need for precise severity assessment and dynamic monitoring [ 10], which remain fundamental to devel-
oping targeted interventions and alleviating this escalating mental health epidemic.

© 2026 IOP Publishing Ltd. All rights, including for text and data mining, Al training, and similar technologies, are reserved.
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However, the diagnosis and treatment of depression remain highly challenging. Social stigma often causes
individuals to underreport symptoms out of fear of judgment [ 11], reinforcing social desirability bias that leads
patients to deliberately minimize their emotional difficulties. Meanwhile, current diagnostic procedures still
rely heavily on subjective clinical evaluations and self-reported symptoms, making them vulnerable to human
error, inconsistent interpretation, and limited reliability [2, 3]. Collectively, these limitations highlight an
urgent need for objective, reliable, and supportive diagnostic tools that can assist clinicians in making accurate
and timely decisions.

Electroencephalography (EEG) is a technique that records the brain’s spontaneous electrical activity by
placing electrodes on the scalp in a non-invasive manner and plays a crucial role in diagnosing neurological
disorders, including depression [12, 13]. By capturing the weak electrical signals generated by cortical neurons,
EEG reflects the brain’s bioelectrical activity during cognitive processes such as thinking and perception. EEG
signals can reveal alterations in brainwave patterns and are extensively utilized in medical settings to assist in
diagnosing neurological disorders, including motor neuron disease, Parkinson’s disease, epilepsy, sleep dis-
orders, coma, encephalopathy, and brain death [14-17].

Accurate analysis of EEG data provides doctors with deeper insights into a patient’s neurological condition,
enabling the development of personalized treatment plans. The integration of artificial intelligence with clinical
expertise allows machine learning algorithms to efficiently analyze vast amounts of clinical data and imaging
information. Recently, deep learning has gained popularity in EEG signal processing. For example, models
predicting Beck Depression Inventory (BDI) scores have shown promising results [18]. Techniques like Recur-
rent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks have achieved exceeding 92%
classification accuracy by analyzing features from preprocessed EEG signals [19]. Studies indicate that depres-
sed patients often exhibit reduced alpha wave activity, a key diagnostic feature. Additionally, a machine learn-
ing method for screening depression in young adults using wireless EEG has been proposed [20]. This method
filters EEG data into six frequency bands, extracts features such as Hjorth parameters, Shannon entropy, and
log energy entropy, and uses a Cubic SVM classifier with 5-fold cross-validation. The model achieves 97.22%
accuracy in the Beta band (12-30Hz), with 97.2% precision and 95.8% specificity, outperforming others in
distinguishing depressed individuals.

However, EEG-based intelligent diagnosis of depression still faces three major challenges: (1) the high cost
of EEG data collection limits large-scale dataset construction; (2) EEG data annotation relies heavily on clinical
experts, which is time-consuming and lacks standardization; and (3) existing datasets are often small, incom-
plete, or lack labeling. These data-related constraints significantly hinder the generalization and real-world
deployment of machine learning models in clinical settings. In this study, the term ‘incomplete data conditions’
reflects several inherent limitations of the Mumtaz HUSM EEG dataset, including limited clinical metadata, the
absence of channel-level quality-control information, and variability in the amount of usable EEG across sub-
jects. Together with the relatively small sample size, these factors restrict the completeness of the data repre-
sentation and pose challenges for developing reliable automated depression classifiers.

Recent studies have explored data-efficient modeling strategies, such as employing generative models for
data augmentation and using deep learning techniques to extract robust features. Building upon our previous
human-machine collaborative diagnosis framework for depression [21], this study proposes a hybrid human—
machine diagnostic framework that differs substantially from prior DCGAN-based EEG studies. While existing
research typically combines GAN-generated signals with CNN classifiers, our method introduces a decision-
level fusion mechanism that explicitly incorporates human clinical judgment into the computational pipeline.
Rather than treating clinicians and machine learning models as independent diagnostic entities, the proposed
framework integrates them through a confidence-aware adaptive weighting strategy, enabling dynamic adjust-
ment between machine predictions and expert assessment. This hybrid design enhances robustness, and redu-
ces model-driven bias that have not been addressed in previous GAN-EEG approaches.

The major contributions of this work are summarized as follows:

¢ DCGAN-based EEG Data Augmentation: We employ a deep generative model (DCGAN) to synthesize
realistic EEG signals and expand the limited original dataset. By training the classifier on a combination of
real and synthetic samples, the model captures richer spatial-temporal EEG representations associated with
depressive symptoms, effectively alleviating the small-sample problem common in clinical EEG studies.

o Adaptive Human-Machine Hybrid Intelligence: Unlike prior works that independently combine DCGAN
and CNN, this study implements an adaptive human-machine hybrid intelligence model that integrates
expert knowledge with machine learning techniques. In this model, adaptive physician diagnosis is
combined with automated analysis, enhancing the reliability and accuracy of diagnostic results. This hybrid
strategy reduces over-reliance on machine outputs, mitigates data-driven bias, and enhances practical
applicability in real-world medical scenarios-an aspect unexplored in existing GAN-based EEG literature.
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o High-Accuracy Diagnosis under Incomplete Data Conditions: By combining data augmentation with
human-machine fusion, the proposed framework maintains strong diagnostic performance even under
limited or incomplete EEG data conditions. This approach offers a practical and clinically meaningful
solution for intelligent depression diagnosis, providing new insights into Al-assisted neuropsychiatric
assessment.

The paper is organized as follows: section 2 reviews related work, and section 3 outlines the methodology.
Section 4 presents experiments and results, and section 5 concludes the paper and discusses future work.

2.Related research

Electroencephalogram (EEG)-based emotion recognition has emerged as a pivotal direction in affective
computing, providing valuable insights into the neurological underpinnings of mental health disorders such as
depression. In recent years, the rapid advancement of artificial intelligence (AI) techniques has accelerated the
development of data-driven diagnostic tools in both neuroscience and clinical applications. Among these, EEG
analysis stands out due to its non-invasive nature and ability to capture subtle cognitive and affective patterns.

In particular, the integration of machine learning algorithms with clinical expertise has shown great pro-
mise in enhancing the accuracy and interpretability of depression diagnosis. This hybrid approach not only
addresses the limitations of conventional subjective assessments but also offers practical solutions to data scar-
city and annotation challenges commonly encountered in EEG-based research. This section reviews prior stu-
dies in depression recognition across multiple modalities—including EEG, speech, and facial expression—and
highlights their methodological innovations and remaining limitations.

2.1. Depression diagnosis

Proper diagnosis and treatment are essential to prevent depression. Screening tools such as the Beck Depression
Inventory-1I (BDI-II) [22], Center for Epidemiologic Studies Depression (CES-D) [23], Hamilton Depression
Rating Scale (HDRS) [24], and the three-page Patient Health Questionnaire (PHQ-9) [25] are commonly used
to detect depression. Early automatic depression detection primarily relied on handcrafted acoustic or prosodic
features extracted from speech [26—-28]. While significant progress has been made in speech-based depression
recognition, there is still room for improvement, especially in temporal modeling.

Beyond speech, medical imaging—based studies have explored multimodal fusion approaches. For example,
the Local-Global Multimodal Fusion Graph Neural Network (LGMF-GNN) model [29] integrates functional
MR, structural MRI, and EHR data, revealing clinically meaningful connectivity abnormalities in MDD
patients and enhancing diagnostic accuracy.

With the rise of artificial intelligence, facial-expression—based recognition has also been investigated, where
CNNis utilize regions of interest such as the eyes and mouth to distinguish depressive states [30]. It further
enhances classification by identifying key regions of interest (ROI), including the facial, eye, and mouth
regions, and using them to train a pre-trained 2D CNN model for improved accuracy.

More recently, transformer-based and multimodal architectures have further advanced depression detec-
tion. Representative examples include MTNet, which fuses EEG and eye-tracking signals, achieving 91.79%
accuracy and demonstrating the advantages of multimodal feature alignment. [31]. In text-based assessment,
transformer ensembles such as vanilla BERT, BERTweet, and ALBERT have been employed to estimate depres-
sion severity from social media posts [32], while other studies leverage BERT and Mental BERT with additional
extra-linguistic cues for detecting depression and stress [33]. Moreover, multimodal transformer frameworks
such as TensorFormer [34] further demonstrate the benefits of combining heterogeneous signals. Collectively,
these studies highlight a growing trend toward deep multimodal representation learning for depression
assessment.

2.2.Human-machine hybrid intelligence in the medical field
As medical decision-making often involves complex, uncertain, and high-dimensional information, integrat-
ing human expertise with computational intelligence has become an increasingly valuable strategy in clinical
applications. Human—machine hybrid intelligence leverages the strengths of both sides: machine learning
models excel at uncovering latent patterns in physiological and behavioral data, while clinicians provide
contextual understanding and high-level reasoning that cannot be fully captured by algorithms alone. In
depression diagnosis, such synergy enables more accurate and personalized assessments by compensating for
the limitations inherent in both human judgment and automated inference.

Within this paradigm, machine learning (ML) and deep learning (DL) have demonstrated strong potential
for analyzing EEG signals in neurological and psychiatric evaluation [35]. DL architectures, in particular, are
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capable of automatically extracting discriminative neural representations that distinguish major depressive dis-
order (MDD) patients from healthy individuals [36]. Despite these advantages, conventional ML/DL systems
typically rely on centralized training frameworks, which raise practical limitations—most notably significant
privacy concerns due to the sensitive nature of medical data, and the need for substantial computational
resources for data storage and model optimization [35, 37].

Beyond EEG-only modeling, recent ML research has expanded toward learning from multimodal physiolo-
gical and behavioral data. For example, ML frameworks have been developed to detect clinically meaningful
patterns in imaging, biomedical signals, and electronic health records [38]. By analyzing EEG along with phy-
siological and biochemical markers of depression, Mumtaz et al proposed a machine learning approach [39]
using synchronization likelihood (SL) features for automatic MDD diagnosis, demonstrating notable potential
for early screening. Concurrently, natural language processing (NLP) techniques have enabled innovative
approaches to psychological assessment, including computational analyses of counseling dialogues to uncover
linguistic markers associated with depressive tendencies [40]. By integrating sequence modeling, message clus-
tering, and psycholinguistic metrics, these methods offer quantitative and interpretable insights for intelligent
mental health assessment.

Traditional depression diagnosis methods, such as interviews and questionnaires, are often time-consum-
ing and costly. In addition, some individuals may struggle to verbally express their depressive symptoms, mak-
ing diagnosis more challenging. To address this issue, a study developed a Persian-language chatbot [41] based
on deep learning to assist in diagnosing depression. The chatbot was trained using textual data from both indi-
viduals with depression and healthy individuals, including question-and-answer exchanges. Experimental
results showed that the chatbot achieved an accuracy of over 85% and an F1 score of 80.5%, outperforming
similar studies. These findings highlight the chatbot’s potential as a valuable tool for supporting depression
diagnosis and treatment.

3. Diagnostic method

This paper proposes an innovative depression diagnosis method based on human-machine hybrid intelligence,
aiming to achieve robust depression detection under incomplete data scenarios. The approach consists of three
core interconnected steps: data processing, model architecture, and adaptive diagnosis. Each stage builds upon
the previous one, collaboratively enhancing the accuracy, robustness, and reliability of the diagnosis, effectively
overcoming challenges posed by incomplete or imperfect data.

The method starts by acquiring EEG signals and using independent component analysis (ICA) to remove
noise, ensuring clean data for further analysis. Following this, we introduce a data augmentation strategy using
DCGAN to generate synthetic data and expand the dataset, facilitating better model training. Then we outline
the design of Convolutional Neural Networks (CNN), which are employed to extract key features from the
augmented dataset and perform classification. Finally, we discuss an adaptive diagnosis approach, combining
the machine-generated predictions with expert clinical assessments to refine the final diagnosis. figure 1 illus-
trates the overall depression diagnosis system structure.

In this study, we employed the DCGAN architecture to generate synthetic EEG data, thereby expanding the
training set and improving model generalization. The DCGAN consists of a Generator and a Discriminator: the
Generator produces realistic EEG signals, while the Discriminator learns to distinguish between real and synth-
etic data. As shown in figure 2, these components are designed to learn EEG data distributions effectively. To
prevent data leakage and ensure unbiased evaluation, we first partitioned the original dataset into training and
testing subsets, and then applied data augmentation only to the training set.

A convolutional neural network (CNN) is further employed as the classifier to extract both spatial and
temporal representations from the preprocessed EEG segments. The overall architecture of the proposed
model is shown in figure 3. The network begins with a spatial convolutional layer, which applies 8 filters with a
(19 x 1) kernel, allowing the model to learn inter-channel spatial relationships across the 19 EEG electrodes.
Next, a depthwise temporal convolution is performed usinga (1 x 32) kernel with depth multiplierd =2,
enabling multi-scale temporal feature extraction from each spatially filtered component. This is followed by a
ReLU activation and batch normalization to enhance nonlinearity and stabilize training. A large Aver-
agePooling2D layer with pool size (1 x (samples -kernelLength + 1)) is then used to collapse the temporal
dimension, generating a compact representation of each feature map. Finally, the flattened feature vector is fed
into a fully connected dense layer with 2 output units, followed by a softmax activation to classify EEG segments
into Healthy or MDD. This architecture is lightweight, stable, and specifically designed for small-sample EEG
scenarios with incomplete data, making it suitable for depression detection tasks.

The diagnosis of depression is a complex process that typically requires clinicians to perform multi-
dimensional assessments rather than relying on a single test or analysis. Therefore, our diagnostic system
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Figure 1. Architecture of the proposed human-machine hybrid depression diagnosis system, which combines EEG data
augmentation via DCGAN Module and classification via Diagnostic Network Module, with low-confidence predictions refined by
expert.

integrates the expertise of clinicians as a critical criterion for the final diagnosis, while maintaining the integrity
of EEG features. The specific steps are as follows:

1. EEG Signal Acquisition: EEG signals are obtained through electrodes placed on the patient’s scalp. To avoid
interference from electrooculographic (EOG) signals, this study employs Independent Component Analysis
(ICA) to isolate and remove artifacts related to eye activity, such as blinking and eye movements.

2. Feature Extraction and Classification: The purified EEG signals are then passed through a trained
Convolutional Neural Networks (CNN), which automatically extracts signal features and classifies the
signals as either healthy or depressed.

3. Final Diagnosis Integration: The classification results from the CNN are combined with expert clinical
assessments using a weighted approach to derive the final depression diagnosis, where adaptive weight
adjustment plays a key role.

To better reflect real-world diagnostic scenarios, we implement a dynamic weight adjustment strategy
based on specific evaluation metrics, where prediction confidence determines the weight distribution. In this
adaptive framework, confidence scores indicate the model’s certainty in its predictions and dynamically influ-
ence weight allocation. Higher confidence increases the reliance on model-generated results, whereas lower
confidence shifts greater weight to expert evaluations. This adaptive mechanism simulates real-world decision-
making, ensuring that when the model exhibits high certainty, its influence is prioritized. By effectively inte-
grating expert insights, this method enhances diagnostic precision and reliability, as illustrated in figure 4(a).
The main algorithmic concept of the entire article is described in algorithm 1.

The algorithm achieves dynamic adaptive diagnosis through four stages:

In the first stage, ICA is used to denoise raw EEG signals, while DCGAN generates synthetic data to expand
the training set, ensuring that generated data is used exclusively for training.

In the second stage, a CNN model is constructed for feature extraction and classification, obtaining initial
prediction probabilities for distinguishing patients from healthy individuals through end-to-end training.

In the third stage, an innovative dynamic weight fusion mechanism is introduced—expert evaluation
weight w” is dynamically adjusted based on the model’s confidence score p;, and the final comprehensive

(p +3")

diagnosis is derived using the weighted fusion formula D; = 3
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Figure 2. Detailed architecture of the DCGAN model, illustrating the progressive upsampling operations in the generator and the
hierarchical downsampling structure of the discriminator.

In the fourth stage, system performance is validated using a confusion matrix and multidimensional eva-
luation metrics, with model selection based on accuracy, precision, and F1-score.

By leveraging a confidence-driven elastic weight allocation mechanism, this process retains the efficiency of
machine learning when the model exhibits high confidence, while enhancing the interpretability of expert
knowledge when confidence is low, achieving an optimized synergy between human and machine intelligence.

4. Experiments and results

4.1. Data collection

This study utilized a publicly available EEG dataset collected by Mumtaz et al at the Universiti Sains Malaysia
Hospital (HUSM). The dataset includes EEG signals from 34 patients with major depressive disorder (mean age
40.33 years, standard deviation & 12.861) and 30 healthy controls (mean age 38.227 years, standard deviation
=+ 15.64). The study design was approved by the ethics committee. EEG data were acquired based on the
international 10-20 system, with linked ears as the reference. Nineteen electrodes were placed on the scalp,
covering the frontal (Fp1, Fp2, F3, F4, F7, F8, Fpz), temporal (T3, T4, T5, T6), parietal (P3, P4, P7, P8), occipital
(01, 02), and central regions (C3, C4), as shown in figure 4(b). The data were high-pass filtered at 0.70 Hz and
processed with a 50 Hz notch filter to reduce power line noise. EEG signals were recorded at a sampling rate of
256 Hz. This study focuses on analyzing resting-state EEG signals.
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followed by softmax for two-class classification (Healthy versus MDD).
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Figure 4. (a). Confidence-based adaptive diagnosis flowchart. (b). EEG Electrode Placement Diagram. (c). Segmented EEG signal
processing.

Algorithm 1. Confidence-Adaptive Depression Diagnosis Algorithm

Require:
1: Raw EEG signal X € R"*¢ (e.g., n = 64 samples(34 depression samples, 30 healthy control samples), c = 19 channels)
2: Truelabelsy € {0, 1}" (0 =healthy, 1 = depression)
3: Confidence score p; € (0, 1); confidence threshold 7= 0.7

Ensure: Comprehensive diagnosis result D € [0, 1]", evaluation metrics

4: Stage 1: Data Preprocessing

5:1CA denoising: X « ICA(X)

6: Split data: Xirain, Xlests Jirain® Yiest < Split(/?, y)
7: DCGAN augmentation: X,y; < DCGAN(X'rain)
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(Continued.)
8: Expand training set: Xrain < Xirain + Xaug
9: Stage 2: Model Training and Prediction
10: Initialize CNN model M with parameters 6,
11: Train model: 0% « arg rrelin LM (Xirain)s ¥ irain)
12: Predict probabilities: p, < softmax (M (Xt [1])), fori=1, ..., Mest
13: Predictlabels: §; < arg max(p;)
14: Stage 3: Dynamic Weight Fusion
15: for each sample i € Xy do
16: Prediction confidence: p; «— max(p;)
17:  Model weight: W « p,
18: Expert weight:

1, p<T

Wl —a(l = p), a:{o4 o>

19:  Expertjudgment: s — w® . ¥;
20: Model judgment: s H_wﬁf,); p;
21: Finaldiagnosis: D; < M

22:end for

23: Stage 4: Performance Evaluation

24: Confusion matrix: CM « ConfusionMatrix (3., )

25 Compute metrics: { Accuracy, Precision, Recall, F1, ...} «— Metrics(CM)

26:return D, CM, { Accuracy, Precision, F1}

4.2. Preprocessing of data

4.2.1. Removal of artifacts

When processing EEG data, identifying and removing interference signals from other physiological activities is
crucial to ensure data quality. These interference signals can include artifacts such as eye blinks, eye movements,
and heartbeat-related noise, which may obscure the true brain activity signals in the EEG recordings. To address
this issue, the study employed Independent Component Analysis (ICA), specifically the efficient FastICA
algorithm, to separate and remove these artifact signals. This approach helps retain cleaner EEG signals, which
are essential for subsequent analysis.

4.2.2. Data segmentation, augmentation, and partitioning

The original dataset consists of EEG recordings from 64 subjects, including 30 healthy individuals and 34
patients diagnosed with major depressive disorder (MDD). Using DCGAN generated 225 synthetic healthy
samples and 230 synthetic depressive samples.

Then, the original 5-minute EEG signals were segmented into shorter 16-second intervals to further enhance the
diversity and effectiveness of model training, resulting in a total of 1200 segments. To maintain signal continuity and
preserve key features, each segment (except the first and last) partially overlapped with the preceding and subsequent
segments. This approach prevents signal discontinuity while retaining the core characteristics of the EEG data, as
shown in figure 4(c). With a sampling rate of 256 Hz, each segment contained 4096 data points per channel.

To ensure that model evaluation reflects performance on real EEG signals, the train—test partition was con-
ducted strictly on the real dataset. Specifically, 90% of the real samples were assigned to the training set, while the
remaining 10% were held out as the final test set. Within the 90% training pool, 10-fold cross-validation was
applied for model training and validation (figure 5). After obtaining the train—validation split in each fold,
DCGAN-generated samples were added exclusively to the training subset. Both the validation subset and the
independent test set contained only real EEG data, ensuring an unbiased estimate of generalization performance.

4.2.3. Feature extraction

The EEG signals in this study were recorded from 19 channels, each capturing electrophysiological activity
from different brain regions. Seven features were extracted from each channel, including relative power in four
frequency bands (delta wave: 0.5-4 Hz; theta wave: 4-8 Hz; alpha wave: 8—12 Hz; beta wave: 12-30 Hz) and
three nonlinear features (sample entropy, Higuchi’s fractal dimension, and the Hurst exponent), which are key
indicators of brain functional states. These features were then used to analyze differences in EEG signals for
depression diagnosis, as they are closely related to the brain functional differences observed in depressive
patients. Furthermore, these features were utilized to train deep learning classification models, enabling
efficient and accurate diagnosis of depression.
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Figure 5. 10-fold cross-validation.

4.3. Diagnostic network

In the statistical analysis phase, we extracted features from both real and DCGAN-generated EEG signals of
healthy and depressive individuals to provide a comprehensive comparison. As illustrated in figure 6, two sets
of comparisons are presented: the delta wave (0.5—-4 Hz) characteristics of the original EEG signals and those of
the generated EEG signals. Both comparisons consistently reveal clear differences between healthy and
depressive groups, indicating that delta-band activity is strongly associated with mental health status. The
similarity between real and synthetic patterns further demonstrates that the generated EEG preserves
meaningful physiological characteristics.

To evaluate the effectiveness of the CNN diagnostic network in our experiments, we trained the raw EEG
data using CNN, KNN, and SVM models separately and compared their performance. The classification per-
formance of each model is illustrated in figure 7, with detailed numerical results summarized in table 1. As
shown in the figure, the CNN model consistently achieves higher classification accuracy than both KNN and
SVM across all evaluation steps. Furthermore, the shaded error bands in the figure represent the standard
deviation across multiple experimental runs, reflecting the robustness and stability of the CNN model. The
CNN’s higher average accuracy clearly demonstrates its superior generalization performance for EEG-based
depression diagnosis.

For a comprehensive comparison, we adopted standard evaluation metrics as defined in equation 1:

Accuracy — — 2+ TN
Y = i Nt P+ IN
Precision = —2
~ TP+FP (1
2 X Recall x Precision
F-score = —————

Recall + Precision

where TP represents True Positive, FN represents False Negative, FP represents False Positive and TN
represents True Negative.

Accuracy refers to the proportion of correctly classified samples relative to the total number of samples.
Precision is the proportion of correctly predicted positive samples among all samples predicted as positive. The
F1 score, which is the harmonic mean of precision and recall, provides a balanced measure that accounts for
both precision and recall. Recall, or sensitivity, indicates the proportion of correctly predicted positive samples
out of all actual positive samples.

4.4.Data generation

In this study, we used DCGAN to generate 225 healthy EEG samples and 230 depressive EEG samples. To verify
the similarity in features between the synthetic data and the real data, and to ensure that the synthetic data could
be used for CNN model training, we extracted spectral features (delta, theta, alpha, and beta wave power) and
nonlinear features (sample entropy, Higuchi’s fractal dimension, and the Hurst exponent) from both the

9



I0P Publishing Eng. Res. Express 8 (2026) 025217 N Chenget al

Real Delta power of signal from each channel Fake Delta power of signal from each channel

" i

W e @ B & o® B omoE G wo®@ koW ow R G R B o B a7 BT Aoa m @ @ w1 R G w
nnnnnnnnn Gannel names

Delta power (relative)
Delta power (relative)

(a) Original EEG: delta wave (0.5-4 Hz) (b) Generated EEG: delta wave (0.5-4 Hz)

Figure 6. Comparison of delta wave (0.5-4 Hz) between healthy and depressed subjects: (a) original EEG; (b) DCGAN-generated
EEG. The generated signals preserve key spectral characteristics of real EEG, demonstrating their physiological plausibility.
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Figure 7. Performance comparison of CNN, KNN, and SVM on raw data classification.

synthetic and real data. Statistical analyses, including t-tests, ANOVA, and boxplots, were conducted to
compare feature distributions across channels. The results showed that the synthetic data closely resembled real
data, especially in terms of spectral features, confirming the reliability of the synthetic samples.

We divided the data into healthy and depressive groups and compared the distributions of the Hurst expo-
nent feature between the synthetic and real data. The x-axis represents the long-term memory of the time series,
while the y-axis represents the kernel density estimate, which shows the probability density of data points at
each x-axis value. A higher y-axis value indicates a greater probability of a data point appearing at the corresp-
onding x-axis position. The purple curve represents real data, and the green curve represents synthetic data,
with the healthy group shown in figure 8. It can be observed that the distribution curves of the two datasets have
alarge overlap in the central region, providing visual evidence that not only confirms the statistical similarity
between the synthetic and real samples, but also emphasizes the considerable potential of GAN technology in
the field of medical data augmentation.

To further validate the effectiveness of the generated data, both real and generated EEG samples were input
into a pre-trained CNN model for depression diagnosis. The results, shown in figure 9, demonstrated that the
model’s performance using generated data was comparable to that using real data. This confirms that the
DCGAN model effectively generates data that closely resembles real EEG signals, thereby contributing to a
more diverse dataset and enhancing the model’s generalization ability for depression diagnosis.

Opverall, our findings not only provide a powerful tool for depression diagnosis but also lay a solid founda-
tion for the future application of GAN technology in the diagnosis and research of neuropsychiatric disorders.
With ongoing advancements and optimizations in technology, we hope that the generated EEG data can be
progressively improved and contribute to societal benefits, offering valuable insights for clinical diagnosis and

scientific research.
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Figure 9. The computed classification results of CNN, trained separately on real and synthetic data.

Table 1. Classifying raw data using three models: CNN, KNN, and SVM.

Aver-accuracy Aver-precision Aver-F1 score
CNN 89.31% 84.63% 89.02%
KNN 71.01% 67.28% 69.80%
SVM 59.47% 55.70% 57.78%

4.5. Depression diagnosis

To situate our work within the broader research landscape and to provide a clear overview of the application of
Generative Adversarial Networks (GANs) for EEG data augmentation in various classification tasks, we have
compiled a comparative summary of relevant studies [42—44] in table 2.
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Table 2. Comparison of GAN-based EEG Data Augmentation Methods for Classification Tasks.

Study Method Application Dataset Performance

Zhangetal (2018) Conditional DCGAN (cDCGAN) Motor Imagery Classification BCI Competition II Dataset I11 82.86% accuracy (raw), 82.86% (synthetic), about 84% with
augmentation

Lingetal (2022) Residual Dense Block (RDB)-DCGAN Sleep Stage Classification Sleep-EDF Database -+6% overall accuracy, +19% for N1 stage

Carrie etal. (2023)

Conditional Wasserstein GAN (WGAN)
with CNN

Major Depressive Disorder (MDD)
Diagnosis

Cai et al. EEG Dataset; Mumtaz et al EEG
Dataset

-+10% accuracy on the first dataset, no significant improvement
on the second dataset

Proposed method

DCGAN + Human-Machine Hybrid CNN

Depression Diagnosis

Mumtaz et al EEG Dataset

97.20% accuracy, 96.36% precision, 97.38% F1-score
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Figure 10. Training and testing accuracy curves of the CNN model under two conditions: with and without consideration of the

doctor’s diagnosis.

This table synthesizes key methodologies, target applications, datasets, and reported performance gains
across different studies, including our own. The comparison reveals a consistent trend: GAN-based data aug-
mentation is a potent strategy for mitigating data scarcity and class imbalance in EEG analysis, leading to per-
formance improvements across diverse domains such as brain-computer interfaces, sleep staging, and mental
disorder diagnosis. It also highlights the methodological evolution from standard DCGANSs to more stabilized
variants like WGAN and architecturally enhanced models like RDB-DCGAN. Our proposed method, which
integrates DCGAN-based augmentation with an adaptive human-machine hybrid model, achieves state-of-
the-art performance on the depression diagnosis task, as evidenced by the highest accuracy and F1-score
among the compared studies. This structured comparison underscores the effectiveness of our approach and
facilitates a direct understanding of its contributions relative to existing literature.

To validate the depression diagnosis system proposed in this paper, we conducted two experiments to assess
its performance in diagnosing depression. The dataset was divided into two groups: depressed patients and
healthy individuals.

In both experiments, after preprocessing the data and splitting it into training and testing sets, we applied
data augmentation to the training set and assessed the model’s performance using 10-fold cross-validation to
ensure robustness and reliability.

In the first experiment, we evaluated the performance of the CNN model without incorporating doctors’
diagnostic opinions. The classification accuracy on the training and testing sets is shown in figures 10(a) and
(b), respectively. Quantitative results in table 3 further confirm the model’s strong generalization capability in
distinguishing between healthy and depressed states, highlighting the potential of machine learning in assisting

diagnostic tasks. The confusion matrices are presented in table 4.

In the second experiment, we incorporated the doctor’s diagnosis, which was based on patient interactions,
questionnaires, and observations. Each data segment was labeled as 0 for healthy or 1 for depressed, and these
labels were used as the doctor’s diagnostic results. During network training, one-hot encoding was applied to
facilitate subsequent hybrid Al diagnosis. Additionally, a dynamic weight adjustment method based on the

model’s confidence score was implemented to better simulate real-world diagnostic scenarios. In this experi-

ment, the data labels were used as the doctor’s diagnosis results.

13



10P Publishing

Eng. Res. Express 8 (2026) 025217 N Chengetal

Table 3. Results of Experiments 1 and 2.

Experiment Accuracy Precision F1-score
Experiment 1 91.07% 86.21% 90.90%
Experiment 2 97.20% 96.36% 97.38%

Table 4. Confusion matrices on the test set for Experiments 1 and 2.

Experiment 1 Experiment 2
Experiment

Pred. Pred. Pred. Pred.
Depressed Healthy Depressed Healthy

Actual Depressed 58 2 59 1

Actual Healthy 9 51 2 58

The model predicted a probability distribution for each sample, with the maximum predicted probability
serving as the confidence score. These confidence values were processed into a two-dimensional array con-
sistent with the label shape to generate adaptive expert judgments. Finally, by combining and averaging the
adaptive expert judgments with the model’s predictions, a comprehensive diagnostic result was obtained. This
dynamic weight adjustment method effectively balances the contributions of the model’s predictions and the
doctor’s diagnosis, improving diagnostic accuracy and reliability. Experimental results are presented in
figures 10(c), (d), table 3 and the confusion matrices in table 4.

5. Conclusion

In this study, we propose a diagnostic framework tailored for depression detection under conditions of
incomplete and limited EEG data. The approach integrates human—machine collaborative intelligence with a
deep convolutional generative adversarial network (DCGAN) to address the challenges posed by data scarcity.
By generating synthetic EEG signals, the DCGAN module effectively augments the training dataset, while
convolutional neural networks (CNNs) are employed to extract meaningful features. Additionally, a
confidence-based fusion mechanism dynamically adjusts the weight between model predictions and expert
evaluations, leading to more accurate final diagnostic outcomes. Experimental results demonstrate that the
proposed method achieves superior performance in terms of accuracy, precision, and F1 score compared to
conventional models.

This study has several limitations. First, the size of the available EEG dataset is relatively small, which may
restrict the diversity of both real and generated samples. Second, we adopted a baseline conditional DCGAN
architecture to assess the feasibility of EEG data augmentation. More advanced and stable GAN variants—such
as Wasserstein GANs, GANs with gradient penalty, or models incorporating spectral normalization—were not
explored. Third, the current framework focuses exclusively on EEG signals, and its applicability to other phy-
siological modalities remains unexamined.

Although the proposed CNN classifier effectively captures spatial-temporal EEG representations, the cur-
rent work does not incorporate post-hoc interpretability methods such as Grad-CAM, saliency maps, or EEG-
specific attribution techniques. Such visualization tools are valuable for enhancing clinical interpretability and
understanding model decision patterns. In this study, however, we focus primarily on evaluating the feasibility
of GAN-based EEG augmentation and CNN-based classification. As a direction for future work, we will inte-
grate explainable AI (XAI) techniques tailored for multichannel EEG to facilitate more transparent and clini-
cally meaningful interpretations.

Another important limitation is that cross-subject EEG generalization was not evaluated. Cross-subject
EEG analysis constitutes an independent and complex research direction, which typically requires systematic
methods and sufficiently large-scale datasets. Similarly, cross-dataset validation is beyond the scope of this
study due to the limited availability and substantial heterogeneity of public depression-related EEG datasets.

Beyond methodological constraints, potential demographic or clinical imbalances in the datasets may
introduce bias and affect model performance when applied to other populations. Regulatory compliance and
comprehensive clinical validation will be required before any deployment in real-world healthcare settings.
Ethical considerations concerning data usage, potential biases, and clinical implications have been addressed;
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all data were de-identified and used in accordance with their respective data usage agreements, and the frame-
work is intended solely for research and proof-of-concept purposes.

For future work, we plan to improve the GAN architecture to generate more diverse and higher-quality
EEG samples, collect larger-scale EEG datasets, and extend the framework toward multimodal physiological
monitoring, incorporating signals such as heart rate variability (HRV) and electrodermal activity (EDA). In
addition, we aim to further explore cross-subject and cross-dataset generalization, for example by leveraging
transfer learning and multi-domain adversarial training methods, to enhance the model’s adaptability across
different subjects or datasets. We also plan to integrate explainable AI (XAI) techniques tailored for multi-
channel EEG to facilitate more transparent and clinically meaningful interpretations. Through these directions,
we strive to provide more accurate diagnoses and more effective treatment options for individuals with depres-
sion, ultimately improving their quality of life.
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