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Abstract
In clinical EEG-based diagnosis, the acquisition of sufficient andwell-labeled data is often hindered
by high data collection costs, limited accessibility to subjects, and the inherent difficulty of expert
labeling. These constraints result in insufficient data availability, significantly limiting the
performance and reliability of traditionalmachine learningmodels. To address this challenge, we
propose a hybrid human–machine diagnostic framework that integrates deep convolutional
generative adversarial networks (DCGANs) and convolutional neural networks (CNNs) for
depression detection under incomplete data conditions. TheDCGANmodule synthesizes realistic
EEG samples to augment scarce datasets, while CNNs are employed for feature extraction and
classification. A confidence-aware fusion strategy dynamically integrates expert assessmentswith
model predictions, effectively improving diagnostic accuracy in scenarioswith limited labeled data.
Experimental results on real EEGdatasets demonstrate that the proposed approach achieves superior
performance, offering a practical solution for intelligent diagnosis in resource-constrained settings.

1. Introduction

The humanbrain is an extraordinarily intricate organ that governs perception, cognition, and behavior,
forming the foundation of all higher-levelmental functions[1]. Ensuring the stability and health of this system
is therefore essential formaintaining effective cognitive performance and sound decision-making[2]. However,
a variety of neurological and psychiatric conditions can disrupt normal brain functioning. Among them,Major
DepressiveDisorder (MDD) has emerged as one of themost prevalent and debilitatingmental health disorders
[3], posing substantial clinical and societal challenges.

An epidemiological data reveal its alarming prevalence, as demonstrated byHuang et al.’s nationwide sur-
vey indicating a 6.8% lifetime depression incidence inChina [4]. The disorder’s socioeconomic impact proves
equally concerning, accounting for 6.2%ofChina’s total disease-related economic burden and ranking as the
secondmost costlymental health condition [5]. Globally, theWorldHealthOrganization (WHO) classifies
major depressive disorder (MDD) as the fourth leading cause of disability worldwide [6], further underscoring
its clinical significance [7]. Characterized by persistent emotional distress, cognitive impairment, and func-
tional decline, depression not only disrupts daily activities but also severely compromises social engagement
capabilities [8]. Particularly vulnerable populations like the elderly face exacerbated challenges, exhibiting
poorer recovery trajectories compared to younger cohorts [9]. Thesemultifaceted consequences highlight the
critical need for precise severity assessment and dynamicmonitoring [10], which remain fundamental to devel-
oping targeted interventions and alleviating this escalatingmental health epidemic.

aaaaaaaaaaaa-

a
RECEIVED

24 July 2025

REVISED

25December 2025

ACCEPTED FOR PUBLICATION

8 January 2026

PUBLISHED

20 January 2026

© 2026 IOPPublishing Ltd. All rights, including for text and datamining, AI training, and similar technologies, are reserved.

https://doi.org/10.1088/2631-8695/ae35d8
https://orcid.org/0009-0003-7628-5911
https://orcid.org/0009-0007-1903-9860
https://orcid.org/0000-0002-0998-1904
https://orcid.org/0000-0002-3684-5297
https://orcid.org/0000-0002-8706-3252
https://orcid.org/0009-0007-2718-622X
https://orcid.org/0009-0001-8219-0105
mailto:qqzhang@ahu.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1088/2631-8695/ae35d8&domain=pdf&date_stamp=2026-01-20
https://crossmark.crossref.org/dialog/?doi=10.1088/2631-8695/ae35d8&domain=pdf&date_stamp=2026-01-20


However, the diagnosis and treatment of depression remain highly challenging. Social stigma often causes
individuals to underreport symptoms out of fear of judgment [11], reinforcing social desirability bias that leads
patients to deliberatelyminimize their emotional difficulties.Meanwhile, current diagnostic procedures still
rely heavily on subjective clinical evaluations and self-reported symptoms,making themvulnerable to human
error, inconsistent interpretation, and limited reliability [2, 3]. Collectively, these limitations highlight an
urgent need for objective, reliable, and supportive diagnostic tools that can assist clinicians inmaking accurate
and timely decisions.

Electroencephalography (EEG) is a technique that records the brain’s spontaneous electrical activity by
placing electrodes on the scalp in a non-invasivemanner and plays a crucial role in diagnosing neurological
disorders, including depression [12, 13]. By capturing theweak electrical signals generated by cortical neurons,
EEG reflects the brain’s bioelectrical activity during cognitive processes such as thinking and perception. EEG
signals can reveal alterations in brainwave patterns and are extensively utilized inmedical settings to assist in
diagnosing neurological disorders, includingmotor neuron disease, Parkinson’s disease, epilepsy, sleep dis-
orders, coma, encephalopathy, and brain death [14–17].

Accurate analysis of EEGdata provides doctors with deeper insights into a patient’s neurological condition,
enabling the development of personalized treatment plans. The integration of artificial intelligencewith clinical
expertise allowsmachine learning algorithms to efficiently analyze vast amounts of clinical data and imaging
information. Recently, deep learning has gained popularity in EEG signal processing. For example,models
predicting BeckDepression Inventory (BDI) scores have shownpromising results [18]. Techniques like Recur-
rentNeural Networks (RNNs) and Long Short-TermMemory (LSTM)networks have achieved exceeding 92%
classification accuracy by analyzing features frompreprocessed EEG signals [19]. Studies indicate that depres-
sed patients often exhibit reduced alphawave activity, a key diagnostic feature. Additionally, amachine learn-
ingmethod for screening depression in young adults usingwireless EEGhas been proposed [20]. Thismethod
filters EEGdata into six frequency bands, extracts features such asHjorth parameters, Shannon entropy, and
log energy entropy, and uses a Cubic SVMclassifierwith 5-fold cross-validation. Themodel achieves 97.22%
accuracy in the Beta band (12–30Hz), with 97.2%precision and 95.8% specificity, outperforming others in
distinguishing depressed individuals.

However, EEG-based intelligent diagnosis of depression still faces threemajor challenges: (1) the high cost
of EEGdata collection limits large-scale dataset construction; (2)EEGdata annotation relies heavily on clinical
experts, which is time-consuming and lacks standardization; and (3) existing datasets are often small, incom-
plete, or lack labeling. These data-related constraints significantly hinder the generalization and real-world
deployment ofmachine learningmodels in clinical settings. In this study, the term ‘incomplete data conditions’
reflects several inherent limitations of theMumtazHUSMEEGdataset, including limited clinicalmetadata, the
absence of channel-level quality-control information, and variability in the amount of usable EEG across sub-
jects. Togetherwith the relatively small sample size, these factors restrict the completeness of the data repre-
sentation and pose challenges for developing reliable automated depression classifiers.

Recent studies have explored data-efficientmodeling strategies, such as employing generativemodels for
data augmentation and using deep learning techniques to extract robust features. Building upon our previous
human–machine collaborative diagnosis framework for depression [21], this study proposes a hybrid human–
machine diagnostic framework that differs substantially frompriorDCGAN-based EEG studies.While existing
research typically combinesGAN-generated signals withCNNclassifiers, ourmethod introduces a decision-
level fusionmechanism that explicitly incorporates human clinical judgment into the computational pipeline.
Rather than treating clinicians andmachine learningmodels as independent diagnostic entities, the proposed
framework integrates them through a confidence-aware adaptiveweighting strategy, enabling dynamic adjust-
ment betweenmachine predictions and expert assessment. This hybrid design enhances robustness, and redu-
cesmodel-driven bias that have not been addressed in previousGAN–EEGapproaches.

Themajor contributions of this work are summarized as follows:

• DCGAN-based EEGDataAugmentation:We employ a deep generativemodel (DCGAN) to synthesize
realistic EEG signals and expand the limited original dataset. By training the classifier on a combination of
real and synthetic samples, themodel captures richer spatial–temporal EEG representations associatedwith
depressive symptoms, effectively alleviating the small-sample problem common in clinical EEG studies.

• AdaptiveHuman-MachineHybrid Intelligence: Unlike priorworks that independently combineDCGAN
andCNN, this study implements an adaptive human-machine hybrid intelligencemodel that integrates
expert knowledgewithmachine learning techniques. In thismodel, adaptive physician diagnosis is
combinedwith automated analysis, enhancing the reliability and accuracy of diagnostic results. This hybrid
strategy reduces over-reliance onmachine outputs,mitigates data-driven bias, and enhances practical
applicability in real-worldmedical scenarios-an aspect unexplored in existingGAN-based EEG literature.
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• High-AccuracyDiagnosis under IncompleteDataConditions: By combining data augmentationwith
human–machine fusion, the proposed frameworkmaintains strong diagnostic performance even under
limited or incomplete EEGdata conditions. This approach offers a practical and clinicallymeaningful
solution for intelligent depression diagnosis, providing new insights intoAI-assisted neuropsychiatric
assessment.

The paper is organized as follows: section 2 reviews relatedwork, and section 3 outlines themethodology.
Section 4 presents experiments and results, and section 5 concludes the paper and discusses futurework.

2. Related research

Electroencephalogram (EEG)-based emotion recognition has emerged as a pivotal direction in affective
computing, providing valuable insights into the neurological underpinnings ofmental health disorders such as
depression. In recent years, the rapid advancement of artificial intelligence (AI) techniques has accelerated the
development of data-driven diagnostic tools in both neuroscience and clinical applications. Among these, EEG
analysis stands out due to its non-invasive nature and ability to capture subtle cognitive and affective patterns.

In particular, the integration ofmachine learning algorithmswith clinical expertise has shown great pro-
mise in enhancing the accuracy and interpretability of depression diagnosis. This hybrid approach not only
addresses the limitations of conventional subjective assessments but also offers practical solutions to data scar-
city and annotation challenges commonly encountered in EEG-based research. This section reviews prior stu-
dies in depression recognition acrossmultiplemodalities—including EEG, speech, and facial expression—and
highlights theirmethodological innovations and remaining limitations.

2.1.Depression diagnosis
Proper diagnosis and treatment are essential to prevent depression. Screening tools such as the BeckDepression
Inventory-II (BDI-II) [22], Center for Epidemiologic StudiesDepression (CES-D) [23], HamiltonDepression
Rating Scale (HDRS) [24], and the three-page PatientHealthQuestionnaire (PHQ-9) [25] are commonly used
to detect depression. Early automatic depression detection primarily relied on handcrafted acoustic or prosodic
features extracted from speech [26–28].While significant progress has beenmade in speech-based depression
recognition, there is still room for improvement, especially in temporalmodeling.

Beyond speech,medical imaging–based studies have exploredmultimodal fusion approaches. For example,
the Local-GlobalMultimodal FusionGraphNeuralNetwork (LGMF-GNN)model [29] integrates functional
MRI, structuralMRI, andEHRdata, revealing clinicallymeaningful connectivity abnormalities inMDD
patients and enhancing diagnostic accuracy.

With the rise of artificial intelligence, facial-expression–based recognition has also been investigated, where
CNNsutilize regions of interest such as the eyes andmouth to distinguish depressive states [30]. It further
enhances classification by identifying key regions of interest (ROI), including the facial, eye, andmouth
regions, and using them to train a pre-trained 2DCNNmodel for improved accuracy.

More recently, transformer-based andmultimodal architectures have further advanced depression detec-
tion. Representative examples includeMTNet, which fuses EEG and eye-tracking signals, achieving 91.79%
accuracy and demonstrating the advantages ofmultimodal feature alignment. [31]. In text-based assessment,
transformer ensembles such as vanilla BERT, BERTweet, andALBERThave been employed to estimate depres-
sion severity from socialmedia posts [32], while other studies leverage BERT andMentalBERTwith additional
extra-linguistic cues for detecting depression and stress [33].Moreover,multimodal transformer frameworks
such as TensorFormer [34] further demonstrate the benefits of combining heterogeneous signals. Collectively,
these studies highlight a growing trend toward deepmultimodal representation learning for depression
assessment.

2.2.Human-machine hybrid intelligence in themedical field
Asmedical decision-making often involves complex, uncertain, and high-dimensional information, integrat-
ing human expertisewith computational intelligence has become an increasingly valuable strategy in clinical
applications.Human–machine hybrid intelligence leverages the strengths of both sides:machine learning
models excel at uncovering latent patterns in physiological and behavioral data, while clinicians provide
contextual understanding and high-level reasoning that cannot be fully captured by algorithms alone. In
depression diagnosis, such synergy enablesmore accurate and personalized assessments by compensating for
the limitations inherent in both human judgment and automated inference.

Within this paradigm,machine learning (ML) and deep learning (DL)have demonstrated strong potential
for analyzing EEG signals in neurological and psychiatric evaluation [35]. DL architectures, in particular, are
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capable of automatically extracting discriminative neural representations that distinguishmajor depressive dis-
order (MDD) patients fromhealthy individuals [36]. Despite these advantages, conventionalML/DL systems
typically rely on centralized training frameworks, which raise practical limitations—most notably significant
privacy concerns due to the sensitive nature ofmedical data, and the need for substantial computational
resources for data storage andmodel optimization [35, 37].

BeyondEEG-onlymodeling, recentML research has expanded toward learning frommultimodal physiolo-
gical and behavioral data. For example,ML frameworks have been developed to detect clinicallymeaningful
patterns in imaging, biomedical signals, and electronic health records [38]. By analyzing EEG alongwith phy-
siological and biochemicalmarkers of depression,Mumtaz et al proposed amachine learning approach [39]
using synchronization likelihood (SL) features for automaticMDDdiagnosis, demonstrating notable potential
for early screening. Concurrently, natural language processing (NLP) techniques have enabled innovative
approaches to psychological assessment, including computational analyses of counseling dialogues to uncover
linguisticmarkers associatedwith depressive tendencies [40]. By integrating sequencemodeling,message clus-
tering, and psycholinguisticmetrics, thesemethods offer quantitative and interpretable insights for intelligent
mental health assessment.

Traditional depression diagnosismethods, such as interviews and questionnaires, are often time-consum-
ing and costly. In addition, some individualsmay struggle to verbally express their depressive symptoms,mak-
ing diagnosismore challenging. To address this issue, a study developed a Persian-language chatbot [41] based
on deep learning to assist in diagnosing depression. The chatbotwas trained using textual data fromboth indi-
viduals with depression and healthy individuals, including question-and-answer exchanges. Experimental
results showed that the chatbot achieved an accuracy of over 85%and an F1 score of 80.5%, outperforming
similar studies. These findings highlight the chatbot’s potential as a valuable tool for supporting depression
diagnosis and treatment.

3.Diagnosticmethod

This paper proposes an innovative depression diagnosismethod based on human-machine hybrid intelligence,
aiming to achieve robust depression detection under incomplete data scenarios. The approach consists of three
core interconnected steps: data processing,model architecture, and adaptive diagnosis. Each stage builds upon
the previous one, collaboratively enhancing the accuracy, robustness, and reliability of the diagnosis, effectively
overcoming challenges posed by incomplete or imperfect data.

Themethod starts by acquiring EEG signals and using independent component analysis (ICA) to remove
noise, ensuring clean data for further analysis. Following this, we introduce a data augmentation strategy using
DCGAN to generate synthetic data and expand the dataset, facilitating bettermodel training. Thenwe outline
the design ofConvolutionalNeural Networks (CNN), which are employed to extract key features from the
augmented dataset and perform classification. Finally, we discuss an adaptive diagnosis approach, combining
themachine-generated predictions with expert clinical assessments to refine the final diagnosis. figure 1 illus-
trates the overall depression diagnosis system structure.

In this study, we employed theDCGANarchitecture to generate synthetic EEGdata, thereby expanding the
training set and improvingmodel generalization. TheDCGANconsists of aGenerator and aDiscriminator: the
Generator produces realistic EEG signals, while theDiscriminator learns to distinguish between real and synth-
etic data. As shown in figure 2, these components are designed to learn EEGdata distributions effectively. To
prevent data leakage and ensure unbiased evaluation, we first partitioned the original dataset into training and
testing subsets, and then applied data augmentation only to the training set.

A convolutional neural network (CNN) is further employed as the classifier to extract both spatial and
temporal representations from the preprocessed EEG segments. The overall architecture of the proposed
model is shown in figure 3. The network beginswith a spatial convolutional layer, which applies 8 filters with a
(19× 1) kernel, allowing themodel to learn inter-channel spatial relationships across the 19 EEG electrodes.
Next, a depthwise temporal convolution is performedusing a (1× 32) kernel with depthmultiplier d= 2,
enablingmulti-scale temporal feature extraction from each spatially filtered component. This is followed by a
ReLUactivation and batch normalization to enhance nonlinearity and stabilize training. A large Aver-
agePooling2D layerwith pool size (1× (samples -kernelLength+ 1)) is then used to collapse the temporal
dimension, generating a compact representation of each featuremap. Finally, the flattened feature vector is fed
into a fully connected dense layer with 2 output units, followed by a softmax activation to classify EEG segments
intoHealthy orMDD. This architecture is lightweight, stable, and specifically designed for small-sample EEG
scenarioswith incomplete data,making it suitable for depression detection tasks.

The diagnosis of depression is a complex process that typically requires clinicians to performmulti-
dimensional assessments rather than relying on a single test or analysis. Therefore, our diagnostic system
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integrates the expertise of clinicians as a critical criterion for the final diagnosis, whilemaintaining the integrity
of EEG features. The specific steps are as follows:

1. EEG Signal Acquisition: EEG signals are obtained through electrodes placed on the patient’s scalp. To avoid
interference from electrooculographic (EOG) signals, this study employs IndependentComponent Analysis
(ICA) to isolate and remove artifacts related to eye activity, such as blinking and eyemovements.

2. Feature Extraction and Classification: The purified EEG signals are then passed through a trained
ConvolutionalNeural Networks (CNN), which automatically extracts signal features and classifies the
signals as either healthy or depressed.

3. Final Diagnosis Integration: The classification results from the CNN are combined with expert clinical
assessments using aweighted approach to derive the final depression diagnosis, where adaptiveweight
adjustment plays a key role.

To better reflect real-world diagnostic scenarios, we implement a dynamicweight adjustment strategy
based on specific evaluationmetrics, where prediction confidence determines theweight distribution. In this
adaptive framework, confidence scores indicate themodel’s certainty in its predictions and dynamically influ-
enceweight allocation.Higher confidence increases the reliance onmodel-generated results, whereas lower
confidence shifts greater weight to expert evaluations. This adaptivemechanism simulates real-world decision-
making, ensuring that when themodel exhibits high certainty, its influence is prioritized. By effectively inte-
grating expert insights, thismethod enhances diagnostic precision and reliability, as illustrated in figure 4(a).
Themain algorithmic concept of the entire article is described in algorithm 1.

The algorithm achieves dynamic adaptive diagnosis through four stages:
In the first stage, ICA is used to denoise rawEEG signals, whileDCGANgenerates synthetic data to expand

the training set, ensuring that generated data is used exclusively for training.
In the second stage, a CNNmodel is constructed for feature extraction and classification, obtaining initial

prediction probabilities for distinguishing patients fromhealthy individuals through end-to-end training.
In the third stage, an innovative dynamicweight fusionmechanism is introduced—expert evaluation

weight ( )
e
i is dynamically adjusted based on themodel’s confidence score ρi, and the final comprehensive

diagnosis is derived using theweighted fusion formula
( )( )

= +
Di

p s

2
i e

i

.

Figure 1.Architecture of the proposed human-machine hybrid depression diagnosis system, which combines EEGdata
augmentation viaDCGANModule and classification viaDiagnosticNetworkModule, with low-confidence predictions refined by
expert.
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In the fourth stage, systemperformance is validated using a confusionmatrix andmultidimensional eva-
luationmetrics, withmodel selection based on accuracy, precision, and F1-score.

By leveraging a confidence-driven elastic weight allocationmechanism, this process retains the efficiency of
machine learningwhen themodel exhibits high confidence, while enhancing the interpretability of expert
knowledgewhen confidence is low, achieving an optimized synergy between human andmachine intelligence.

4. Experiments and results

4.1.Data collection
This study utilized a publicly available EEGdataset collected byMumtaz et al at theUniversiti SainsMalaysia
Hospital (HUSM). The dataset includes EEG signals from34patients withmajor depressive disorder (mean age
40.33 years, standard deviation± 12.861) and 30 healthy controls (mean age 38.227 years, standard deviation
± 15.64). The study designwas approved by the ethics committee. EEGdatawere acquired based on the
international 10-20 system,with linked ears as the reference.Nineteen electrodeswere placed on the scalp,
covering the frontal (Fp1, Fp2, F3, F4, F7, F8, Fpz), temporal (T3, T4, T5, T6), parietal (P3, P4, P7, P8), occipital
(O1,O2), and central regions (C3, C4), as shown in figure 4(b). The datawere high-pass filtered at 0.70 Hz and
processedwith a 50 Hz notch filter to reduce power line noise. EEG signals were recorded at a sampling rate of
256 Hz. This study focuses on analyzing resting-state EEG signals.

Figure 2.Detailed architecture of theDCGANmodel, illustrating the progressive upsampling operations in the generator and the
hierarchical downsampling structure of the discriminator.

6

Eng. Res. Express 8 (2026) 025217 NCheng et al



Algorithm1.Confidence-AdaptiveDepressionDiagnosis Algorithm

Require:

1: RawEEG signal ×RX n c (e.g.,n= 64 samples(34 depression samples, 30 healthy control samples), c= 19 channels)
2: True labels y∈ {0, 1}n (0= healthy, 1= depression)
3: Confidence score ρi∈ (0, 1); confidence threshold τ = 0.7

Ensure: Comprehensive diagnosis resultD∈ [0, 1]n, evaluationmetrics

4: Stage 1:Data Preprocessing

5: ICAdenoising: ˜ ( )X XICA

6: Split data: ( ˜ )X X Xy y y, , , split ,train test train test

7:DCGANaugmentation: ( )X XDCGANaug train

Figure 3.DetailedCNNarchitecture for diagnosing and classifying EEG signals. Themodel includes a spatial convolutional layer (8
filters, 19× 1 kernel), a depthwise temporal convolution layer (1 × 32 kernel, depthmultiplier= 2), ReLU activation, batch
normalization, and a global temporal average-pooling layer. The extracted features are flattened and fed into a fully connected layer
followed by softmax for two-class classification (Healthy versusMDD).

Figure 4. (a). Confidence-based adaptive diagnosis flowchart. (b). EEGElectrode PlacementDiagram. (c). Segmented EEG signal
processing.
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(Continued.)
8: Expand training set: +X X Xtrain train aug

9: Stage 2:Model Training andPrediction

10: Initialize CNNmodel Mwith parameters θm
11: Trainmodel: ( ( ) )L M X* yarg min ,m train train

m
12: Predict probabilities: ( ( [ ]))M Xp isoftmaxi test , for i= 1,…, ntest
13: Predict labels: ˆ ( )y parg maxi i

14: Stage 3:DynamicWeight Fusion

15: for each sample Xi test do

16: Prediction confidence: ( )pmaxi i

17: Model weight: ( )
m
i

i

18: Expertweight:

( )( ) =
<

1 ,
1,

0.4,e
i

i
i

i

19: Expert judgment: ·( ) ( )s ye
i

e
i

i

20: Model judgment: ·( ) ( )s pm
i

m
i

i

21: Final diagnosis:
( ) ( )+

Di
s s

2
e
i

m
i

22: end for

23: Stage 4: Performance Evaluation

24: Confusionmatrix: ( ˆ)CM y yConfusionMatrix ,test

25Computemetrics: {Accuracy, Precision, Recall, F1, ...} ←Metrics(CM)
26:returnD,CM, {Accuracy, Precision, F1}

4.2. Preprocessing of data
4.2.1. Removal of artifacts
Whenprocessing EEGdata, identifying and removing interference signals fromother physiological activities is
crucial to ensure data quality. These interference signals can include artifacts such as eye blinks, eyemovements,
andheartbeat-related noise, whichmay obscure the true brain activity signals in the EEG recordings. To address
this issue, the study employed IndependentComponent Analysis (ICA), specifically the efficient FastICA
algorithm, to separate and remove these artifact signals. This approach helps retain cleaner EEG signals, which
are essential for subsequent analysis.

4.2.2. Data segmentation, augmentation, and partitioning
The original dataset consists of EEG recordings from64 subjects, including 30 healthy individuals and 34
patients diagnosedwithmajor depressive disorder (MDD). UsingDCGANgenerated 225 synthetic healthy
samples and 230 synthetic depressive samples.

Then, theoriginal 5-minuteEEGsignalswere segmented into shorter 16-second intervals to further enhance the
diversity and effectiveness ofmodel training, resulting in a total of 1200 segments. Tomaintain signal continuity and
preserve key features, each segment (except thefirst and last)partially overlappedwith thepreceding and subsequent
segments. This approachprevents signal discontinuitywhile retaining the core characteristics of theEEGdata, as
shown infigure 4(c).With a sampling rate of 256Hz, each segment contained4096data points per channel.

To ensure thatmodel evaluation reflects performance on real EEG signals, the train–test partitionwas con-
ducted strictly on the real dataset. Specifically, 90%of the real sampleswere assigned to the training set, while the
remaining 10%were held out as thefinal test set.Within the 90% training pool, 10-fold cross-validationwas
applied formodel training and validation (figure 5). After obtaining the train–validation split in each fold,
DCGAN-generated sampleswere added exclusively to the training subset. Both the validation subset and the
independent test set contained only real EEGdata, ensuring anunbiased estimate of generalizationperformance.

4.2.3. Feature extraction
The EEG signals in this studywere recorded from19 channels, each capturing electrophysiological activity
fromdifferent brain regions. Seven featureswere extracted from each channel, including relative power in four
frequency bands (deltawave: 0.5–4Hz; thetawave: 4–8Hz; alphawave: 8–12Hz; beta wave: 12–30Hz) and
three nonlinear features (sample entropy,Higuchi’s fractal dimension, and theHurst exponent), which are key
indicators of brain functional states. These features were then used to analyze differences in EEG signals for
depression diagnosis, as they are closely related to the brain functional differences observed in depressive
patients. Furthermore, these features were utilized to train deep learning classificationmodels, enabling
efficient and accurate diagnosis of depression.
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4.3.Diagnostic network
In the statistical analysis phase, we extracted features fromboth real andDCGAN-generated EEG signals of
healthy and depressive individuals to provide a comprehensive comparison. As illustrated in figure 6, two sets
of comparisons are presented: the delta wave (0.5–4Hz) characteristics of the original EEG signals and those of
the generated EEG signals. Both comparisons consistently reveal clear differences between healthy and
depressive groups, indicating that delta-band activity is strongly associatedwithmental health status. The
similarity between real and synthetic patterns further demonstrates that the generated EEGpreserves
meaningful physiological characteristics.

To evaluate the effectiveness of theCNNdiagnostic network in our experiments, we trained the rawEEG
data usingCNN,KNN, and SVMmodels separately and compared their performance. The classification per-
formance of eachmodel is illustrated in figure 7, with detailed numerical results summarized in table 1. As
shown in the figure, theCNNmodel consistently achieves higher classification accuracy than bothKNNand
SVMacross all evaluation steps. Furthermore, the shaded error bands in the figure represent the standard
deviation acrossmultiple experimental runs, reflecting the robustness and stability of theCNNmodel. The
CNN’s higher average accuracy clearly demonstrates its superior generalization performance for EEG-based
depression diagnosis.

For a comprehensive comparison, we adopted standard evaluationmetrics as defined in equation 1:

-

( )

=

=

=

+
+ + +

+

× ×
+

Accuracy

Precision

F score

1

TP TN

TP FN FP TN

TP

TP FP

Recall Precision

Recall Precision

2

where TP represents True Positive, FN represents FalseNegative, FP represents False Positive andTN
represents TrueNegative.

Accuracy refers to the proportion of correctly classified samples relative to the total number of samples.
Precision is the proportion of correctly predicted positive samples among all samples predicted as positive. The
F1 score, which is the harmonicmean of precision and recall, provides a balancedmeasure that accounts for
both precision and recall. Recall, or sensitivity, indicates the proportion of correctly predicted positive samples
out of all actual positive samples.

4.4.Data generation
In this study, we usedDCGAN to generate 225 healthy EEG samples and 230 depressive EEG samples. To verify
the similarity in features between the synthetic data and the real data, and to ensure that the synthetic data could
be used forCNNmodel training, we extracted spectral features (delta, theta, alpha, and beta wave power) and
nonlinear features (sample entropy,Higuchi’s fractal dimension, and theHurst exponent) fromboth the

Figure 5. 10-fold cross-validation.
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synthetic and real data. Statistical analyses, including t-tests, ANOVA, and boxplots, were conducted to
compare feature distributions across channels. The results showed that the synthetic data closely resembled real
data, especially in terms of spectral features, confirming the reliability of the synthetic samples.

We divided the data into healthy and depressive groups and compared the distributions of theHurst expo-
nent feature between the synthetic and real data. The x-axis represents the long-termmemory of the time series,
while the y-axis represents the kernel density estimate, which shows the probability density of data points at
each x-axis value. A higher y-axis value indicates a greater probability of a data point appearing at the corresp-
onding x-axis position. The purple curve represents real data, and the green curve represents synthetic data,
with the healthy group shown in figure 8. It can be observed that the distribution curves of the two datasets have
a large overlap in the central region, providing visual evidence that not only confirms the statistical similarity
between the synthetic and real samples, but also emphasizes the considerable potential of GAN technology in
the field ofmedical data augmentation.

To further validate the effectiveness of the generated data, both real and generated EEG sampleswere input
into a pre-trainedCNNmodel for depression diagnosis. The results, shown in figure 9, demonstrated that the
model’s performance using generated datawas comparable to that using real data. This confirms that the
DCGANmodel effectively generates data that closely resembles real EEG signals, thereby contributing to a
more diverse dataset and enhancing themodel’s generalization ability for depression diagnosis.

Overall, our findings not only provide a powerful tool for depression diagnosis but also lay a solid founda-
tion for the future application ofGAN technology in the diagnosis and research of neuropsychiatric disorders.
With ongoing advancements and optimizations in technology, we hope that the generated EEGdata can be
progressively improved and contribute to societal benefits, offering valuable insights for clinical diagnosis and
scientific research.

Figure 6.Comparison of delta wave (0.5–4Hz) between healthy and depressed subjects: (a) original EEG; (b)DCGAN-generated
EEG. The generated signals preserve key spectral characteristics of real EEG, demonstrating their physiological plausibility.

Figure 7.Performance comparison of CNN,KNN, and SVMon rawdata classification.
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4.5.Depression diagnosis
To situate ourworkwithin the broader research landscape and to provide a clear overviewof the application of
Generative Adversarial Networks (GANs) for EEGdata augmentation in various classification tasks, we have
compiled a comparative summary of relevant studies [42–44] in table 2.

Figure 8.Comparison ofHurst exponent distribution between synthetic and real healthy data.

Figure 9.The computed classification results of CNN, trained separately on real and synthetic data.

Table 1.Classifying raw data using threemodels: CNN,KNN, and SVM.

Aver-accuracy Aver-precision Aver-F1 score

CNN 89.31% 84.63% 89.02%

KNN 71.01% 67.28% 69.80%

SVM 59.47% 55.70% 57.78%
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Table 2.Comparison ofGAN-based EEGDataAugmentationMethods for ClassificationTasks.

Study Method Application Dataset Performance

Zhang et al (2018) ConditionalDCGAN (cDCGAN) Motor Imagery Classification BCICompetition IIDataset III 82.86%accuracy (raw), 82.86% (synthetic), about 84%with

augmentation

Ling et al (2022) ResidualDense Block (RDB)-DCGAN Sleep StageClassification Sleep-EDFDatabase +6%overall accuracy,+19% forN1 stage

Carrie et al. (2023) ConditionalWassersteinGAN (WGAN)
withCNN

MajorDepressiveDisorder (MDD)
Diagnosis

Cai et al.EEGDataset;Mumtaz et alEEG

Dataset

+10%accuracy on the first dataset, no significant improvement

on the seconddataset

Proposedmethod DCGAN+Human-MachineHybridCNN DepressionDiagnosis Mumtaz et alEEGDataset 97.20%accuracy, 96.36%precision, 97.38%F1-score
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This table synthesizes keymethodologies, target applications, datasets, and reported performance gains
across different studies, including our own. The comparison reveals a consistent trend: GAN-based data aug-
mentation is a potent strategy formitigating data scarcity and class imbalance in EEG analysis, leading to per-
formance improvements across diverse domains such as brain-computer interfaces, sleep staging, andmental
disorder diagnosis. It also highlights themethodological evolution from standardDCGANs tomore stabilized
variants likeWGANand architecturally enhancedmodels like RDB-DCGAN.Our proposedmethod, which
integratesDCGAN-based augmentationwith an adaptive human-machine hybridmodel, achieves state-of-
the-art performance on the depression diagnosis task, as evidenced by the highest accuracy and F1-score
among the compared studies. This structured comparison underscores the effectiveness of our approach and
facilitates a direct understanding of its contributions relative to existing literature.

To validate the depression diagnosis systemproposed in this paper, we conducted two experiments to assess
its performance in diagnosing depression. The dataset was divided into two groups: depressed patients and
healthy individuals.

In both experiments, after preprocessing the data and splitting it into training and testing sets, we applied
data augmentation to the training set and assessed themodel’s performance using 10-fold cross-validation to
ensure robustness and reliability.

In the first experiment, we evaluated the performance of theCNNmodel without incorporating doctors’
diagnostic opinions. The classification accuracy on the training and testing sets is shown in figures 10(a) and
(b), respectively.Quantitative results in table 3 further confirm themodel’s strong generalization capability in
distinguishing between healthy and depressed states, highlighting the potential ofmachine learning in assisting
diagnostic tasks. The confusionmatrices are presented in table 4.

In the second experiment, we incorporated the doctor’s diagnosis, whichwas based on patient interactions,
questionnaires, and observations. Each data segmentwas labeled as 0 for healthy or 1 for depressed, and these
labels were used as the doctor’s diagnostic results. During network training, one-hot encodingwas applied to
facilitate subsequent hybridAI diagnosis. Additionally, a dynamicweight adjustmentmethod based on the
model’s confidence scorewas implemented to better simulate real-world diagnostic scenarios. In this experi-
ment, the data labels were used as the doctor’s diagnosis results.

Figure 10.Training and testing accuracy curves of theCNNmodel under two conditions: with andwithout consideration of the
doctor’s diagnosis.
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Themodel predicted a probability distribution for each sample, with themaximumpredicted probability
serving as the confidence score. These confidence valueswere processed into a two-dimensional array con-
sistent with the label shape to generate adaptive expert judgments. Finally, by combining and averaging the
adaptive expert judgmentswith themodel’s predictions, a comprehensive diagnostic result was obtained. This
dynamicweight adjustmentmethod effectively balances the contributions of themodel’s predictions and the
doctor’s diagnosis, improving diagnostic accuracy and reliability. Experimental results are presented in
figures 10(c), (d), table 3 and the confusionmatrices in table 4.

5. Conclusion

In this study, we propose a diagnostic framework tailored for depression detection under conditions of
incomplete and limited EEGdata. The approach integrates human–machine collaborative intelligencewith a
deep convolutional generative adversarial network (DCGAN) to address the challenges posed by data scarcity.
By generating synthetic EEG signals, theDCGANmodule effectively augments the training dataset, while
convolutional neural networks (CNNs) are employed to extractmeaningful features. Additionally, a
confidence-based fusionmechanismdynamically adjusts theweight betweenmodel predictions and expert
evaluations, leading tomore accurate final diagnostic outcomes. Experimental results demonstrate that the
proposedmethod achieves superior performance in terms of accuracy, precision, and F1 score compared to
conventionalmodels.

This study has several limitations. First, the size of the available EEGdataset is relatively small, whichmay
restrict the diversity of both real and generated samples. Second, we adopted a baseline conditionalDCGAN
architecture to assess the feasibility of EEGdata augmentation.More advanced and stableGANvariants—such
asWassersteinGANs,GANswith gradient penalty, ormodels incorporating spectral normalization—were not
explored. Third, the current framework focuses exclusively on EEG signals, and its applicability to other phy-
siologicalmodalities remains unexamined.

Although the proposedCNNclassifier effectively captures spatial–temporal EEG representations, the cur-
rentwork does not incorporate post-hoc interpretabilitymethods such asGrad-CAM, saliencymaps, or EEG-
specific attribution techniques. Such visualization tools are valuable for enhancing clinical interpretability and
understandingmodel decision patterns. In this study, however, we focus primarily on evaluating the feasibility
of GAN-based EEG augmentation andCNN-based classification. As a direction for futurework, wewill inte-
grate explainable AI (XAI) techniques tailored formultichannel EEG to facilitatemore transparent and clini-
callymeaningful interpretations.

Another important limitation is that cross-subject EEGgeneralizationwas not evaluated. Cross-subject
EEG analysis constitutes an independent and complex research direction, which typically requires systematic
methods and sufficiently large-scale datasets. Similarly, cross-dataset validation is beyond the scope of this
study due to the limited availability and substantial heterogeneity of public depression-related EEGdatasets.

Beyondmethodological constraints, potential demographic or clinical imbalances in the datasetsmay
introduce bias and affectmodel performancewhen applied to other populations. Regulatory compliance and
comprehensive clinical validationwill be required before any deployment in real-world healthcare settings.
Ethical considerations concerning data usage, potential biases, and clinical implications have been addressed;

Table 3.Results of Experiments 1 and 2.

Experiment Accuracy Precision F1-score

Experiment 1 91.07% 86.21% 90.90%

Experiment 2 97.20% 96.36% 97.38%

Table 4.Confusionmatrices on the test set for Experiments 1 and 2.

Experiment
Experiment 1 Experiment 2

Pred.

Depressed

Pred.

Healthy

Pred.

Depressed

Pred.

Healthy

ActualDepressed 58 2 59 1

ActualHealthy 9 51 2 58
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all datawere de-identified andused in accordancewith their respective data usage agreements, and the frame-
work is intended solely for research and proof-of-concept purposes.

For futurework, we plan to improve theGANarchitecture to generatemore diverse and higher-quality
EEG samples, collect larger-scale EEGdatasets, and extend the framework towardmultimodal physiological
monitoring, incorporating signals such as heart rate variability (HRV) and electrodermal activity (EDA). In
addition, we aim to further explore cross-subject and cross-dataset generalization, for example by leveraging
transfer learning andmulti-domain adversarial trainingmethods, to enhance themodel’s adaptability across
different subjects or datasets.We also plan to integrate explainable AI (XAI) techniques tailored formulti-
channel EEG to facilitatemore transparent and clinicallymeaningful interpretations. Through these directions,
we strive to providemore accurate diagnoses andmore effective treatment options for individuals with depres-
sion, ultimately improving their quality of life.
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